Such Samples 2

Recently Tom Rondeau did a bunch of work to add message passing support to GNU Radio’s Qt based plotters.  This is really cool because now there’s not a whole lot of need for the gr-pyqt (pyqwt based) message plotters anymore other than prototyping custom plotting things.   The obvious thing to do was update Such Samples to switch over to the more efficient, portable, stable, feature filled, and well supported plotters from the main GNU Radio distribution.

Building the Graph

Now that the Qt Gui message plotters have complex PDU message port input, we can simply hook them up to the pyqt file message source and everything works as expected!   To make wandering around recordings easier, there is now an open dialog which passes messages into the message source, and a drop down for file type would be nice to add too.  Overall the flowgraph is super simple and all message based, shown below.

ss2_graph

Graphical Interface

Running the graph, the new plotters look quite a bit cleaner and better than the old ones!  The spectrogram/waterfall plot now supports messages as well, so we include that in addition to the time/frequency plots.   Below you can see a wideband look at the 2.4 GHz ISM band which can be easily explored and intuited in each plot dimension.

ss2

This flowgraph is available on github @ such_samples2.grc

 

 

 

GNU Radio Message Lambda Blocks

It occurred randomly tonight that both python blocks and passing around lambda functions are awesome. The clear conclusion of this was that we should add python lambda blocks to GNU Radio. Since ~15 lines of python and all the installing, importing and xml wrapping is a bit lengthy for writing new python blocks, it occurred to me that in many of these blocks, the only thing that is changing is really the mapping from input vector to output vector of a PDU.

Therefore I introduce to you the new Python PDU Lambda message block. Now from GRC you can make up a completely new message block by simply writing a lambda function in a block parameter field which defines the mapping from input vector to output vector. Since pmt’s to_python and to_pmt methods handle typing for you, this works for any PMT vector type and you can generally use any python or numpy calls within your lambda argument to the block to quickly add completely new functionality from GRC with really minimal effort.

grc-plot

Testing with Such Samples

Dropping a lambda block into the such samples waveform, we make a new block which simply computes a log-power over time signal of a decimated input signal. Dropping this into a standard plotting block, we immediately have promising looking results. Any desired transform of the input data set that can be represented as a lambda function using numpy/etc can now be used to plot random segments of data from our input file now!

window

Also note that the gr-pyqt plots now support adding markers with “shift + left-click” as well as bring up a context menu (which allows you to clear markers) with “middle-click”.

This pdu_lambda block is now readily available in the gr-pyqt out-of-tree module.  The potential damage of new monolithic Balint-style GRC graphs using this block is frightening.

Such Samples: A GNU Radio Tool for Rapid Sample Data File Visualization with Message Passing

GNU Radio has always been a great stream processing system for building signal processing systems. Less noticed perhaps is that GNU Radio’s QTGui component matured, it came along with a handful of useful little tools such as gr_time_plot_c which allowed for inspection of sample data files in the time and frequency domain using the same plot widgets we typically use for streaming data. Since this makes use of a handful of GNU Radio stream blocks to perform file reading, sample dropping and alignment, and vector sources to stream data into the stream sink, and we have recently done quite a bit of work with message based plotting, I wondered if it was time to start trying to re-think these a bit. Aside from that, recently I was trying to look at some really large simulated data sets using this tool and getting frustrated with the slugish nature of the tool every time I wanted to move around in time.

So using message passing in GNU Radio I tried to re-think what a sample data analysis tool might look like, and how it might behave responsively to a use interface, accessing only the data of interest and not wasting time reading and trimming large streams using the traditional GNU Radio stream operations on the fixed data file.

Tool Composition

The tool, which I call “Such samples” is actually quite simple when built using GNU Radio Companion. It really only represents two new blocks aside from using the existing gr-pyqt based PDU message plotters, these blocks are:

1. A message based file source, which takes in a tuple message of (start item, item length) and reads out a PDU containing the requested item range after performing a low level fseek to align correctly (never reading in items outside that range).  Reading data is then conducted transparently through numpy’s from_file and pmt’s to_pmt methods which are quite fast and able to handle large chunks.

2. A message based range tool, which allows for a user to manipulate the location and sample range to view within the file. This really just sends out the (start item, item length) tuples to the message file source and doesn’t do much else.

Both of these are initially implemented as pretty concise simple python blocks, but connecting them up in GNU Radio Companion we see that it’s created a pretty simple but nicely performing tool for looking at data files.

The flowgraph is shown below, and could be easily tailored to include all kinds of message operations and plots that one might want to add or include in such a tool.

fg

Tool Operation

The tools is pretty primitive right now, but operation is simple – a command line parameter, or GNU Radio Companion variable default specified which sample data file to open, and by default the sample range [0,4096] is displayed in a time and frequency plot. Moving a slider around allows you to move the start sample throughout the file, and changing the “sample length” field allows you to change the number of complex samples plotted at a time down below. When the file is opened, it tells the range widget the start and end sample within the file so that the bar correctly spans the range of the file.

A screenshot of the tool in operation can be seen below.

plots

Still to do…

There is still lots of clean up remaining, the file source is hard wired for complx64 type samples right now, the gr-pyqt plots still have relatively meaningless labels, no nice context menus, and generally things look a little bit sloppy, but the basic architecture is in place and feels solid and responsive to me. If anyone wants to help with these other items please send pull requests on github!

I would love to switch to using the normal gr-qtgui plotters, once they support message based inputs, but for now these PyQWT based plotters aren’t too bad when passing numpy vectors around in python by reference.

The tool can be found within the gr-pyqt repo’s app’s directory on github @ https://github.com/osh/gr-pyqt/tree/master/apps

A0W2Er7